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Abstract

The classical Principle of Equivalence ensures that a life insurance
company can accomplish that the mean balance per policy converges
to zero almost surely for an increasing number of independent policy-
holders. By certain assumptions, this idea is adapted to the general
case with stochastic financial markets. The implied minimum fair price
of general life insurance policies is then uniquely determined by the
product of the assumed unique equivalent martingale measure of the
financial market with the physical measure for the biometric risks. The
approach is compared with existing related results. Numeric examples
are given.
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1 Introduction

Roughly speaking, the Principle of Equivalence of traditional life insurance
mathematics states that premiums should be calculated such that incomes
and losses are “balanced in the mean”. Under the assumption that financial
markets are deterministic, this idea leads to a valuation method usually called
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“Expectation Principle”. The use of the two principles ensures that a life office
can accomplish that (i.e. can buy hedges such that) the mean balance per policy
converges to zero almost surely for an increasing number of policyholders. This
is often confered to as the ability to “diversify” mortality (or biometric) risks.
The main mathematical ingredients for this diversification are the stochastic
independence of individual lives and the Strong Law of Large Numbers (SLLN).
To obtain the mentioned convergence, it is neither necessary to have identical
policies, nor to have i.i.d. lifetimes.

In modern life insurance mathematics, where financial markets are assumed
to be stochastic and where more general products (e.g. unit-linked ones) are
taken into consideration, the widely accepted valuation principle is an expec-
tation principle, too. However, the respective probability measure is different
since the minimum fair price or market value of an insurance claim is deter-
mined by the no-arbitrage pricing method known from financial mathematics.
The respective equivalent martingale measure (EMM) is the product of the
given EMM of the financial market with the physical measure for the biomet-
ric risks. Throughout the paper, we will call this kind of valuation the product
measure principle. Although the result is not as straightforward as in the tra-
ditional case, a convergence property similar to the one mentioned above can
be shown. So, diversification of biometric risks is still possible in the presence
of stochastic financial markets, where payments related to e.g. unit-linked life
policies of different policyholders may not be independent.

The aim of this paper is the derivation of an equivalent martingale mea-
sure for the pricing of life insurance policies starting from the assumption
that, under the induced valuation principle, diversification of biometric risks
should be possible by means of a convergence property as above, i.e. a life
insurance company should be able to accomplish that the mean balance per
contract converges to zero almost surely for an increasing number of indepen-
dent policyholders. We will see that, under certain assumptions, the EMM
then is uniquely determined and given by the product measure mentioned ear-
lier, i.e. by the product of the given EMM of the financial market with the
physical measure for the biometric risks. In different versions, diversification
approaches have appeared in the literature on valuation. Considered as some-
how straightforward, they are usually stated without proofs and for identical
policies and i.i.d. lives, only. However, the derivation of a unique equivalent
martingale measure and respective convergence properties for varying types
of policies and lives at the same time, as carried out in this paper, needs a
formally different setup and different mathematical tools than the derivation
of a unique pricing rule for infinitely many identical policies for i.i.d. lives, as
done in some papers. In this sense, the present paper has a technical focus.
Particular emphasis is put on mathematically rigorous and explicit model as-
sumptions necessary for the derivation of the mentioned results. For instance,
we state integrability conditions for cash flows of not necessarily identical poli-
cies that are sufficient for the application of the SLLN even if independence
gets lost by common financial risks.
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Research on the valuation of unit-linked life insurance products already
started in the late 1960s. One of the first results that was in its core identical
to the product measure principle was Brennan and Schwartz (1976). In this
paper, the authors ”eliminate mortality risk” by assuming an “average pur-
chaser of a policy”, which clearly is a diversification argument. More recent
papers mainly dedicated to valuation following this approach are Aase and
Persson (1994) for the Black-Scholes model and Persson (1998) for a stochas-
tic interest rate model. Aase and Persson (1994), but also other authors, a
priori suppose independence of financial and biometric events. In their paper,
an arbitrage-free and complete financial market ensures the uniqueness of the
financial EMM. The product measure principle is here motivated by a diversi-
fication argument, but also by “risk-neutrality” of the insurer with respect to
biometric risks (cf. Aase and Persson (1994), Persson (1998)). A more detailed
history of valuation in (life) insurance can be found in Møller (2002), see also
the references therein.

There exist other derivations of the product measure principle which do
not rely on diversification arguments. In Møller (2001), for example, the
product measure coincides with the so-called minimal martingale measure
(cf. Schweizer, 1995b). The works Møller (2002, 2003a, 2003b) also consider
valuation, but focus on hedging (mainly quadratic criteria), respectively ad-
vanced premium principles. Becherer (2003) uses exponential utility functions
to derive prices of contracts. In an example for a certain type of contract for
i.i.d. lives, he shows that the product measure principle evolves in the limit
for infinitely many policyholders. In general, no-arbitrage pricing of insurance
cash flows using martingales and equivalent martingale measures, was intro-
duced by Delbaen and Haezendonck (1989) and Sondermann (1991). Later,
Steffensen (2000) described possible sets of price operators for life insurance
contracts by respective sets of eqivalent martingale measures. A more detailed
discussion of some valuation approaches, among them Steffensen (2000) and
Becherer (2003), will take place in Section 8.

The present paper works with a discrete finite time framework. Like other
papers in this field, it is general in the sense that it does not propose partic-
ular models for the dynamics of financial securities or biometric events. The
concept of a life insurance policy is introduced in a very general way and the
presented methods are not restricted to particular types of contracts. The
diversification approach is carried out by assuming certain properties (most
of them also assumed in the articles cited above) of the underlying stochastic
model, like e.g. independence of individuals, independence of biometric and fi-
nancial events, no-arbitrage pricing, etc. To be able to model a wide variety of
possible types of policies and lives, we assume an infinite product space for the
biometric risks that also provides for each possible life (of which we may have
infinitely many) infinitely many i.i.d. ones (= large cohorts of similar lives).
In fact, the setting is that we consider biometric probability spaces (= lives)
and random variables on their products with the financial probability space
(= policies). As already said, the resulting product measure valuation prin-
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ciple is in accordance with existing results. Because of no-arbitrage pricing,
not only prices at time 0, but complete price processes are determined. Under
the mentioned assumptions, it is then shown how a life insurance company
can accomplish the earlier described convergence of mean balances of hedges
together with contractual payments. The initial costs of the respective purely
financial and self-financing hedging strategies can be financed by the minimum
fair premiums.

The hedging method considered in this paper is different from the risk-
minimizing and mean-variance hedging strategies in Møller (1998, 2001, 2002).
In fact, the method is a discrete generalization of the matching approach in
Aase and Persson (1994). This method is less sophisticated than e.g. risk
minimizing strategies (which are unfortunately not self-financing), but is prac-
ticable in the sense that not every single life has to be observed over the whole
term. The paper provides examples for pricing and hedging of different types
of policies. A more detailed example shows for a term assurance and an en-
dowment the historical development of the ratio of the minimum fair annual
premium per benefit. Assuming that premiums are calculated by a conserva-
tively chosen constant technical rate of interest, the example also derives the
development of the market values, i.e. minimum fair prices, of these contracts.

The section content is as follows. In Section 2, some principles considered
to be reasonable for a basic theory of life insurance are briefly discussed in an
enumerated list. Section 3 introduces the market model and the first mathe-
matical assumptions concerning the stochastic model of financial and biomet-
ric risks (product space). Section 4 defines general life insurance policies and
states a generalized Principle of Equivalence (cf. Persson, 1998). In Section
5, the case of classical life insurance mathematics and the motivation of the
Expectation Principle by risk diversification, i.e. the Law of Large Numbers,
is briefly reviewed. Section 6 contains the Law of Large Numbers approach
to valuation in the general case and the deduction of the minimum fair price
(product measure principle). In particular, it is explained how the Strong Law
of Large Numbers can be properly applied in the introduced product space
framework. Section 7 is about hedging, i.e. about the convergence of mean
balances. In this section, examples are given, too. In Section 8, we discuss
related results in the present literature on derivation of valuation principles.
In Section 9, it is shown how parts of the results can be adapted to the case
of incomplete markets. Even for markets with arbitrage opportunities some
results still hold. Section 10 is dedicated to the numerical pricing example
mentioned above. The last section is the conclusion. The appendix contains
figures.

2 Some principles

The following eight principles informally describe the biometric and financial
framework of this article. The formulation by mathematical assumptions
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follows later. It is clear that the principles of our model are not perfect or
complete in any sense, and a considerable amount of research is carried out
in areas where this might be particularly true, e.g. thinking of the idealized
assumption of independent individual biometry (principle 3) which is strongly
challenged by the evidence of so-called longevity risk (e.g. Richards and Jones,
2004). However, the proposed model should be seen as a rudimentary life
insurance framework inheriting some basic ideas and idealized assumptions
from the classical theory, but already working with stochastic financial
markets. In this sense, it is a modern framework. Each principle is given with
a short explanation motivating it.

1. Independence of biometric and financial events. Biometric (or
technical) events, for instance death or injury of persons, are assumed to be
stochastically independent of the events of the financial markets (cf. Aase and
Persson, 1994). In contrast to reinsurance companies, where the movements on
the financial markets can be highly correlated to technical events (e.g. earth-
quakes), such effects are rather unlikely in the case of life insurance.

2. Complete arbitrage-free financial markets. Except for Section 9,
where incomplete markets are examined, complete and arbitrage-free financial
markets are considered throughout the paper. Even though this might be
an unrealistic assumption from the viewpoint of finance, it is realistic from
the perspective of life insurance. The reason is that a life insurance company
usually does not invent purely financial products as this is the working field of
banks. Therefore, it can be assumed that all considered financial products are
either traded on the market, can be bought from banks or can be replicated
by self-financing strategies. Nonetheless, it is self-evident that a claim which
also depends on a biometric event (e.g. the death of a person) can not be
hedged by financial securities, i.e. the joint market of financial and biometric
risks is not complete. In the literature, completeness of financial markets is
often assumed by the use of the Black-Scholes model (cf. Aase and Persson
(1994), Møller (1998)). However, parts of our results are also valid in the case
of incomplete financial markets - which allows for more models. In this case,
financial portfolios will be restricted to replicable ones, and also the considered
life insurance policies are restricted in a similar way.

3. Biometric states of individuals are independent. This is the
standard assumption of classical life insurance. Neglecting the possibility of
epidemic diseases or wars, the principle could be held for appropriate in a mod-
ern framework, too. However, recently research is carried out on modelling and
managing risk caused by major demographic developments (see also the intro-
ductory remark above). In this case, more realistic models with dependencies
fairly enough should replace the biometric independence assumption. Nonethe-
less, we stay with this assumption as our main argument uses diversifyability
of biometric risks and claims to be traditional with respect to this.

4. Large classes of similar individuals. Applying the Law of Large
Numbers in classical life insurance mathematics, an implicit assumption is
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a large number of persons under contract in a particular company. Even
stronger, it can usually be assumed that classes of “similar” persons, e.g. of the
same age, gender and health status, are large. An insurance company should
be able to cope with such a large cohort of similar persons even if all members
of the cohort have the same kind of policy (see also Principle 7 below).

5. Similar individuals can not be distinguished. For fairness reasons,
any two individuals with similar biometric development to be expected should
pay the same price for the same kind of contract. Furthermore, any activity
(e.g. hedging) taken by an insurance company for two individuals holding the
same kind of policy is assumed to be identical as long as their possible future
biometric development is independently identical from the stochastic point of
view.

6. No-arbitrage pricing. As we know from the theory of financial mar-
kets, an important property of a reasonable pricing system is the absence of
arbitrage, i.e. the absence of riskless wins. In our case, it should not be possible
to beat the market by selling and buying life insurance products in e.g. an ex-
isting or hypothetical reinsurance market (cf. Delbaen and Haezendonck (1989)
and Sondermann (1991)). Hence, any product and cash flow will be priced or
given a value under the no-arbitrage principle.

7. Minimum fair prices allow hedging such that mean balances
converge to zero almost surely. The principle of independence of the
biometric probability spaces is closely related to the Expectation Principle
of classical life insurance mathematics. In the classical case, where financial
markets are assumed to be deterministic, this principle states that the value
or single net premium of a cash flow is the expectation of the sum of its
discounted payoffs (expected present value). The connection between the two
principles is the Law of Large Numbers. Values or prices are determined such
that for an increasing number of contracts issued to independent individuals
the insurer can accomplish that the mean final balance per policy converges to
zero almost surely (the variance of this mean balance converges to null, too).
In analogy to the classical case, we generally demand that the minimum fair
price of any policy (from the viewpoint of the insurer) should at least cover
the price of a purely financial hedging strategy that lets the mean balance per
policy converge to zero a.s. for an increasing number of policyholders.

8. Principle of Equivalence. Under a reasonable valuation principle
(cf. Principle 7), the Principle of Equivalence demands that the future pay-
ments to the insurer (premiums) should be determined such that their (mar-
ket) value equals the (market) value of the future payments to the insured
(benefits). The idea is that the liabilities (benefits, claims) can somehow be
hedged working with the premiums. In the coming sections, this concept will
be considered in detail.

Remark 1. In the theory of deterministic financial markets, today’s (time 0)
price of a future cash flow is called its present value. The value of a future cash
flow also subject to mortality risk, evaluated with the classical Expectation
Principle, is called its expected present value. The value of the same cash flow
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evaluated with principles of modern life insurance mathematics (stochastic
financial markets) is called market value in the literature since evaluation is
usually done using market prices of related securities which do not contain
biometric risks. However, the notion market value is somehow misleading as
the life insurance contracts themselves are usually not traded and hence there
usually exist no prices for them that are directly determined by the market. In
accordance with Principle 7, we will call the market value also the minimum
fair price.

Remark 2. Concerning premium calculation, the classical Expectation Prin-
ciple (cf. Principle 7) is usually seen as a minimum premium principle since
any insurance company must be able to cope with higher expenses than the
expected (cf. Embrechts, 2000). So-called safety loads on the minimum fair
premiums can be obtained by more elaborate premium principles. We refer
to the literature for more information on the topic (e.g. Delbaen and Haezen-
donck (1989); Gerber (1997); Goovaerts, De Vylder and Haezendonck (1984);
Møller (2002-2003b); Schweizer (2001)). Another possibility to obtain safety
loads is to use the Expectation Principle with a prudent first order base (also:
technical base or premium basis) for biometric and financial developments,
e.g. conservatively chosen mortality and interest rates, that represent a worst-
case scenario for the future development of the second order base (experience
base), that stands for the real, i.e. observed, development (e.g. Norberg, 2001).

3 The model

Let (F,FT , F) be a probability space equipped with the filtration (Ft)t∈T, where
T = {0, 1, 2, . . . , T} denotes the discrete finite time axis. Assume that F0 is
trivial, i.e. F0 = {∅, F}. Let the price dynamics of d securities of a frictionless
financial market be given by an adapted Rd-valued process S = (St)t∈T. The
d assets with price processes (S0

t )t∈T, . . . , (Sd−1
t )t∈T are traded at times t ∈

T \ {0}. The first asset with price process (S0
t )t∈T is called the money account

and has the properties S0
0 = 1 and S0

t > 0 for t ∈ T. The tuple MF =
(F, (Ft)t∈T, F, T, S) is called a securities market model. A portfolio in MF

is given by a d-dimensional vector θ = (θ0, . . . , θd−1) of real-valued random
variables θi (i = 0, . . . , d−1) on (F,FT , F). A t-portfolio is a portfolio θt which
is Ft-measurable. As usual, Ft is interpreted as the information available at
time t. Since an economic agent takes decisions with respect to the information
available, a trading strategy is a vector θT = (θt)t∈T of t-portfolios θt. The
discounted total gain (or loss) of such a strategy is given by

∑T−1
t=0 〈θt, St+1−St〉,

where S := (St/S
0
t )t∈T denotes the price process discounted by the money

account and 〈. , .〉 denotes the inner product on Rd. One can now define

G =

{
T−1∑
t=0

〈θt, St+1 − St〉 : each θt is a t-portfolio

}
. (1)
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G is a subspace of the space of all real-valued random variables L0(F,FT , F)
where two elements are identified if they are equal F-a.s. The process S satisfies
the so-called no-arbitrage condition (NA) if G ∩ L0

+ = {0}, where L0
+ are the

non-negative elements of L0(F,FT , F) (cf. Delbaen, 1999). The Fundamental
Theorem of Asset Pricing (Dalang, Morton and Willinger, 1990) states that
the price process S satisfies (NA) if and only if there is a probability measure
Q equivalent to F such that under Q the process S is a martingale. Q is called
equivalent martingale measure (EMM), then. Moreover, Q can be found with
bounded Radon-Nikodym derivative dQ/dF.

DEFINITION 1. A valuation principle πF on a set Θ of portfolios in MF

is a linear mapping which maps each θ ∈ Θ to an adapted R-valued stochastic
process (= price process) πF (θ) = (πF

t (θ))t∈T such that

πF
t (θ) = 〈θ, St〉 =

d−1∑
i=0

θiSi
t (2)

for any t ∈ T for which θ is Ft-measurable.

For the moment, the set Θ is not specified any further.

Remark 3. Observe that θ is not indexed with some t as we just assume
it to be FT -measurable in general. For instance, in a case where θ is FT -
measurable, but not FT−1-measurable, the valuation principle πF would assign
a value πF

T−1(θ) to θ although it could not be observed at time T − 1. This is
comparable to the case where we assign a value (at time T − 1) to an option
or insurance contract maturing at time T although we not yet know the final
outcome of the contract.

Consider an arbitrage-free market with price process S as given above
and a portfolio θ with price process πF (θ). From the Fundamental The-
orem it is known that the enlarged market with price dynamics S ′ =
((S0

t , . . . , S
d−1
t , πF

t (θ)))t∈T is arbitrage-free if and only if there exists an EMM
Q for S ′, i.e. Q ∼ F and S ′ a Q-martingale. Hence, one has

πF
t (θ) = S0

t · EQ[〈θ, ST 〉/S0
T |Ft]. (3)

It is well-known that the no-arbitrage condition does not imply a unique
price process for θ when the portfolio can not be replicated by a self-financing
strategy θT, i.e. a strategy such that 〈θt−1, St〉 = 〈θt, St〉 for each t > 0 and
θT = θ. However, in a complete market MF , i.e. a market which features
a self-financing replicating strategy for any portfolio θ (cf. Lemma 1), the
no-arbitrage condition implies unique prices (where prices are identified when
equal a.s.) and therefore a unique EMM Q. Actually, an arbitrage-free
securities market model as introduced above is complete if and only if the
set of equivalent martingale measures is a singleton (cf. Harrison and Kreps
(1979); Taqqu and Willinger (1987); Dalang, Morton and Willinger (1990)).
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We will now introduce assumptions which concern the properties of market
models (not of valuation principles) that include biometric events (cf. Princi-
ples 1 to 4 of Section 2).

Assume to be given a filtered probability space (B, (Bt)t∈T, B) which de-
scribes the development of the biological states of all considered human beings.
No particular model for the development of the biometric information is as-
sumed.

ASSUMPTION 1. A common filtered probability space

(M, (Mt)t∈T, P) = (F, (Ft)t∈T, F)⊗ (B, (Bt)t∈T, B) (4)

of financial and biometric events is given, i.e. M = F ×B, Mt = Ft ⊗ Bt and
P = F⊗ B. Furthermore, F0 = {∅, F} and B0 = {∅, B}.

As M0 = {∅, F ×B}, the model implies that the world is known for sure at
time 0. The symbols M,Mt and P are introduced to shorten notation. M and
Mt are chosen since these objects describe events of the underlying market
model, whereas P denotes the physical probability measure. Later, M is used
to denote a martingale measure.

ASSUMPTION 2. A complete securities market model

MF = (F, (Ft)t∈T, F, T, F S) (5)

with a unique equivalent martingale measure Q is given. The common market
model for financial and biometric risks is denoted by

MF×B = (M, (Mt)t∈T, P, T, S), (6)

where S(f, b) = F S(f) for all (f, b) ∈ M .

In the following, MF×B is understood as a securities market model. The
notions portfolio, no-arbitrage etc. are used as introduced at the beginning of
this section. We will need the following lemma.

LEMMA 1.

(i) Any Ft-measurable portfolio can be replicated by a self-financing strategy
in MF until t.

(ii) Any Ft-measurable payoff can be replicated by a self-financing strategy in
MF until t.

Proof. (i) As MF is complete, any FT -measurable payoff X at T can be repli-
cated until T . This is the usual definition of the completeness of a securities
market model. Hence, there exists for any Ft-measurable portfolio θt a replicat-
ing self-financing (s.f.) strategy (ϕt)t∈T in MF , i.e. ϕT = θt, since X = 〈θt, ST 〉
could be chosen. For no-arbitrage reasons, one must have πF

s (θt) = 〈ϕs, Ss〉
for s ∈ T and therefore 〈θt, Ss〉 = 〈ϕs, Ss〉 for any s ≥ t. So, there also exists
a s.f. strategy such that ϕt = θt, i.e. the portfolio θt is replicated until t.
(ii) Due to (i), the portfolio θt = X/S0

t · e0 can for any Ft-measurable payoff
X be replicated until t. Observe that 〈θt, St〉 = X.
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Remark 4. S is the canonical embedding of F S into (M, (Mt)t∈T, P). We
will usually use the same symbol for a random variable X in (F,Ft, F) and
a random variable Y in (M,Mt, P) (t ∈ T) when Y is the embedding of X
into (M,Mt, P), i.e. Y (f, b) = X(f) for all (f, b) ∈ M . Now, any portfolio F θ
of the complete financial market MF can be replicated by some self-financing
trading strategy F θT = (F θt)t∈T. Under (NA), the unique price process πF (F θ)
of the portfolio is given by

πF
t (F θ) = F S0

t · EQ[〈F θ, F ST 〉/F S0
T |Ft]. (7)

Since S is the embedding of F S into (M, (Mt)t∈T, P), the embedded portfolio

F θ in MF×B is replicated by the embedded trading strategy F θT = (F θt)t∈T
in MF×B. Hence, to avoid arbitrage opportunities, any reasonable valuation
principle π must feature a price process π(F θ) in MF×B that fulfills πt(F θ) =
πF

t (F θ) P-a.s. for any t ∈ T. Since EQ[X|Ft] = EQ⊗B[X|Ft⊗B0] P-a.s. for any
random variable X in (F,FT , F), one must have P-a.s.

πt(F θ) = S0
t · EQ⊗B[〈F θ, ST 〉/S0

T |Ft ⊗ B0] (8)

= S0
t · EQ⊗B[〈F θ, ST 〉/S0

T |Ft ⊗ Bt].

Observe that (St/S
0
t )t∈T is a Q⊗ B-martingale.

ASSUMPTION 3. There are infinitely many human individuals and we have

(B, (Bt)t∈T, B) =
∞⊗
i=1

(Bi, (Bi
t)t∈T, Bi), (9)

where BH = {(Bi, (Bi
t)t∈T, Bi) : i ∈ N+} is the set of filtered probability spaces

describing the development of the i-th individual (N+ := N \ {0}). Each Bi
0 is

trivial.

It follows that B0 is also trivial, i.e. B0 = {∅, B}.

ASSUMPTION 4. For any space (Bi, (Bi
t)t∈T, Bi) in BH there are infinitely

many isomorphic (=identical, except for the indices) ones in BH .

In the sense of Remark 2, the four assumptions above define a model for
the second order base.

4 Life insurance policies

Under the setup given in the last section, the biometric development has by
definition no influence on the price process S of the financial market - and vice
versa. We therefore have situations where a portfolio θ that contains biometric
risk - that is a portfolio which is not of the form θ = F θ P-a.s. with F θ an
MF -portfolio - can not be replicated by purely financial products. Hence, in
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general, relative pricing of life insurance products with respect to MF is not
possible. Usually, life insurance policies are not traded and the possibility of
the valuation of such contracts by the market is not given. The market MF×B

of financial and biometric risks is incomplete. Nonetheless, products have to
be priced as e.g. the insured usually have the right to dissolve any contract
at any time of its duration. We are therefore in the need of a reasonable
valuation principle π for the considered portfolios Θ of the market MF×B and
in particular for general life insurance products.

DEFINITION 2. A general life insurance policy is a vector (γt, δt)t∈T
of pairs (γt, δt) of t-portfolios in Θ (to shorten notation we drop the inner
brackets of ((γt, δt))t∈T). For any t ∈ T, the portfolio γt is interpreted as
a payment of the insurer to the insurant (benefit) and δt as a payment of
the insurant to the insurer (premium), respectively taking place at t. The
notation (iγt,

iδt)t∈T means that the contract depends on the i-th individual’s
life, i.e. for all (f, x), (f, y) ∈ M

(iγt(f, x), iδt(f, x))t∈T = (iγt(f, y), iδt(f, y))t∈T (10)

whenever pi(x) = pi(y), pi being the canonical projection of B onto Bi.

For any policy (γt, δt)t∈T issued by a life office to an individual, this stream
of payments is from the viewpoint of the insurer equivalent to holding the
portfolios (δt − γt)t∈T.

Although there has not yet been considered any particular valuation prin-
ciple, it is assumed that a suitable principle π is a minimum fair price in the
heuristic sense given in Section 2, Principle 7. The properties of a minimum
fair price will be defined and further explained in Section 6.

ASSUMPTION 5. Suppose a suitable valuation principle π on Θ. For any
life insurance policy (γt, δt)t∈T the Principle of Equivalence demands that

π0

(
T∑

t=0

γt

)
= π0

(
T∑

t=0

δt

)
. (11)

As already mentioned in Section 2 (Principle 8), the idea of Eq. (11) is
that the liabilities (γt)t∈T can somehow be hedged working with the premiums
(δt)t∈T since their present values or market values are identical. For the classical
case, this idea is explained in the next section.

Remark 5. We use portfolio notation (and not cash flow notation) since e.g. a
unit-linked life insurance policy depends usually on shares of a fund which
are combinations of traded assets. Trading and hedging strategies become
more transparent with this notation. Furthermore, later stated integrability
conditions can be formulated for units of a portfolio, rather than for a combined
general cash flow. We think, this makes the application of these conditions
easier (compare Examples 3, 4, and Remark 10).
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Since portfolio notation is not commonly used in life insurance mathemat-
ics, we give a brief example of an application of Eq. (11) for a unit-linked
assurance.

Example 1 (Portfolio notation for a unit-linked assurance). We use
Assumptions 1 and 2. For T = 2 and d = 2, assume a complete and arbitrage-
free securities market model MF , e.g. a Cox-Ross-Rubinstein model, with two
assets, the first one being deterministic (bond, S0), the second one stochastic
(stock, S1). We consider a life aged x. This life is modelled by the filtered space
(B, (Bt)t∈{0,1,2}, B), and we assume that he or she is alive at time 0. Suppose
now that β is B1-measurable with β(b) ∈ {0, 1} for any b ∈ B. Assume that
β = 1 if and only if the individual is alive at 1. Define now γ0 = (0, 0),
γ1 = (0, 1000(1 − β)) and γ2 = (0, 1500β). Furthermore, δ0 = (P, 0), where
P ∈ R, and δ1 = δ2 = (0, 0). These portfolios define a simple unit-linked
assurance for the considered life. The policy features a single premium of P at
time 0, the benefit of 1000 shares at time 1 if the life has died until then, or, if
this was not the case, the benefit of 1500 shares at time 2. For the calculation
of P by (11), we will use the product measure principle, which will be discussed
in detail later. Hence, we assume that π is given by

πt(θ) = S0
t · EQ⊗B[〈θ, S2〉/S0

2 |Ft ⊗ Bt], t ∈ {0, 1, 2}. (12)

Therefore,

π0

(
2∑

t=0

γt

)
= π0

(
2∑

t=0

δt

)
(13)

π0 (1000(0, 1− β + 1.5β)) = π0 ((P, 0))

1000EQ⊗B[(1 + 0.5β)S1
2/S

0
2 ] = P.

From this we obtain

P = 1000EB[1 + 0.5β]EQ[S1
2/S

0
2 ] (14)

= 1000(1 + 0.5EB[β])S1
0

= 1000S1
0 + px500S1

0 ,

where px = EB[β] is international actuarial notation for the probability that
an individual aged x survives the following year. Hence, the single premium is
1000 times the share price at time zero, plus 500 times the share price at time
0 multiplied with the one-year survival probability of the life (x). This reflects
the policy, that pays 1000 shares for sure, either at time 1 or at time 2, and
an additional 500 shares at time 2 if the policyholder survived the first year.

5 Valuation: the classical case

In classical life insurance mathematics, the financial market is assumed to be
deterministic. We realize this assumption by |FT | = 2, i.e. FT = {∅, F}, and
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identify (M, (Mt)t∈T, P) with (B, (Bt)t∈T, B). As the market is assumed to be
free of arbitrage, all assets must have the same dynamics up to scaling factors.
Hence, we can assume S = (S0

t )t∈T, i.e. d = 1 and the only asset is the money
account as a deterministic function of time. In the classical framework, it is
common sense that the fair value (or price) at time s of a B-integrable payoff
Ct at t is the conditional expectation of the discounted payoff with respect to
Bs, i.e. for a t-portfolio Ct/S

0
t , having the value Ct at t, we have

πs(Ct/S
0
t ) := S0

s · EB[Ct/S
0
t |Bs], s ∈ T. (15)

Under the Expectation Principle (15), the classical Principle of Equivalence is
given by (11). As the discounted price processes are B-martingales, the classi-
cal financial market together with a finite number of classical price processes
of life policies is free of arbitrage opportunities.

Let us have a closer look at the logic of valuation principle (15). Assume
that Θ is given by the B-integrable portfolios. Suppose Assumption 1 to 3 and
consider the claims {(−iγt)t∈T : i ∈ N+} of a policy from the companies point
of view, where iγt depends on the i-th individual’s life, only (cf. Definition 2).
Furthermore, suppose that for all t ∈ T there is a ct ∈ R+ such that

||iγt||2 ≤ ct (16)

for all i ∈ N+, where ||.||2 denotes the L2-norm of the Hilbert space
L2(M,MT , P) of all square-integrable real functions on (M,MT , P). Now,
buy for all i ∈ N+ and all t ∈ T the portfolios EB[iγt], where EB[iγt] is inter-
preted as a financial product (a t-portfolio) which matures at time t, i.e. the
payoff EB[iγt] ·S0

t in cash at t is bought at 0. Consider the balance of wins and
losses at time t. The mean total payoff at t for the first m policies is given by

1

m

m∑
i=1

(EB[iγt]− iγt) · S0
t . (17)

Clearly, (17) converges B-a.s. to 0 as we can apply the SLLN by Kolmogorov’s
Criterion (cf. (16)). Furthermore, it follows directly from (15) that we have
π0(EB[iγt]) = π0(

iγt) for all i ∈ N+. Hence, in the classical case, the fair value
of any claim equals (except for the different sign, perhaps) the price of a hedge
at time 0 such that for an increasing number of independent claims the mean
balance of claims and hedges converges to zero almost surely.

Now, consider the set of life insurance contracts {(iγt,
iδt)t∈T : i ∈ N+} with

the deltas being defined in analogy to the gammas above. Since for the com-
pany a policy can be considered as a vector (iδt − iγt)t∈T of portfolios, the
analogous hedge is given by (EB[iγt] − EB[iδt])t∈T. Under Assumption 5 the
policy has value zero. From the Expectation Principle (15) we therefore obtain
for all i ∈ N+

T∑
t=0

π0(EB[iδt]− EB[iγt]) =
T∑

t=0

π0(
iδt − iγt) = 0. (18)
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Hence, under (15) and Assumptions 1, 2, 3 and 5, a life office can (without any
costs at time 0) pursue a hedge such that the mean balance per contract at any
time t converges to zero almost surely for an increasing number of individual
policies:

1

m

m∑
i=1

(iδt − iγt − EB[iδt] + EB[iγt]) · S0
t

m→∞−→ 0 B-a.s. (19)

As a direct consequence, the mean of the final balance converges, too:

1

m

m∑
i=1

T∑
t=0

(iδt − iγt − EB[iδt] + EB[iγt]) · S0
T

m→∞−→ 0 B-a.s. (20)

Remark 6. Roughly speaking, the Expectation Principle (15) implies that the
price of any claim at least covers the costs of a purely financial hedge such that
for an increasing number of independent claims the mean balance of claims and
hedges converges to zero almost surely. This is how diversification of biometric
risks appears in the classical case. Under the Equivalence Principle (11), the
hedge of any insurance contract costs nothing at time 0, which is important
as the contract itself is for free, too (cf. Eq. (18)).

6 Valuation: the general case

Before it comes to the topic of valuation in the general case, two technical
lemmas have to be proven and some further notation has to be introduced.

Let the set R := R ∪ {−∞, +∞} be equipped with the usual Borel-σ-
algebra and recall that a function g into R is called numeric.

LEMMA 2. Consider n > 1 measurable numeric functions g1 to gn on the
product (F,F , F) ⊗ (B,B, B) of two arbitrary probability spaces. Then g1 =
. . . = gn F⊗ B-a.s. if and only if F-a.s. g1(f, .) = . . . = gn(f, .) B-a.s.

Proof. For any Q ∈ F ⊗B it is well-known that F⊗B(Q) =
∫

B(Qf )dF, where
Qf = {b ∈ B : (f, b) ∈ Q} and the function B(Qf ) on F is F -measurable. As
for i 6= j the difference gi,j := gi−gj is measurable, the set Q :=

⋂
i6=j g−1

i,j (0) is
F ⊗B-measurable. Now, g1 = . . . = gn a.s. is equivalent to F⊗B(Q) = 1 and
this again is equivalent to B(Qf ) = 1 F-a.s. However, B(Qf ) = 1 is equivalent
to g1(f, .) = . . . = gn(f, .) B-a.s.

LEMMA 3. Let (gn)n∈N and g be a sequence, respectively a function, in
L0(F ×B,F ⊗B, F⊗ B), i.e. the real valued measurable functions on F ×B,
where (F ×B,F ⊗B, F⊗B) is the product of two arbitrary probability spaces.
Then gn → g F⊗ B-a.s. if and only if F-a.s. gn(f, .) → g(f, .) B-a.s.
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Proof. The elements of L0(F ×B,F ⊗B, F⊗B) are measurable numeric func-
tions. Now, recall that for any sequence of real numbers (hn)n∈N and any h ∈ R
the property hn → h is equivalent to lim sup hn = lim inf hn = h. As the limes
superior and the limes inferior of a measurable numeric function always exist
and are measurable, one obtains from Lemma 2 that

lim sup
n→∞

gn = lim inf
n→∞

gn = g F⊗ B-a.s. (21)

if and only if F-a.s.

lim sup
n→∞

gn(f, .) = lim inf
n→∞

gn(f, .) = g(f, .) B-a.s. (22)

As we have seen in Section 4, there is the need for a suitable set Θ of
portfolios on which a particular valuation principle will work. Furthermore, a
mathematically precise description of what was called “similar” in Principle 5
(Section 2) has to be introduced.

DEFINITION 3.

(i) Define
Θ = (L1(M,MT , P))d (23)

and
ΘF = (L1(F,FT , F))d, (24)

where ΘF can be interpreted as a subset of Θ by the usual embedding.

(ii) A set Θ′ ⊂ Θ of portfolios in MF×B is called independently identically
distributed with respect to (B,BT , B), abbreviated B-i.i.d., when for
almost all f ∈ F the random variables {θ(f, .) : θ ∈ Θ′} are i.i.d. on
(B,BT , B). Under Assumption 4, such sets exist and can be countably
infinite.

(iii) Under the Assumptions 1 to 3, a set Θ′ ⊂ Θ satisfies condition (K) if
for almost all f ∈ F the elements of {θ(f, .) : θ ∈ Θ′} are stochastically
independent on (B,BT , B) and ||θj(f, .)||2 < c(f) ∈ R+ for all θ ∈ Θ′

and all j ∈ {0, . . . , d− 1}.
Sets fulfilling condition (B-i.i.d.) or (K) are indexed with the respective

symbol. A discussion of the Kolmogorov Criterion like condition (K) can be
found below (Remark 10). The condition figures out to be quite weak with
respect to all relevant practical purposes.

The remaining assumptions concerning valuation can be stated now. The
next assumption is motivated by the demand that whenever the market with
the original d securities with prices S is enlarged by a finite number of price
processes π(θ) due to general portfolios θ ∈ Θ, the no-arbitrage condition (NA)
should hold for the new market. This assumption corresponds to Principle 6
in Section 2.



6 VALUATION: THE GENERAL CASE 16

ASSUMPTION 6. Any valuation principle π taken into consideration must
for any t ∈ T and θ ∈ Θ be of the form

πt(θ) = S0
t · EM[〈θ, ST 〉/S0

T |Ft ⊗ Bt] (25)

for a probability measure M ∼ P. Furthermore, one must have

πt(F θ) = πF
t (F θ) (26)

P-a.s. for any MF -portfolio F θ and all t ∈ T, where πF
t is as in (7).

Observe that by Assumption 6, the process (St/S
0
t )t∈T must be an M-

martingale. To see that use (25) and (26) with F θ = ei−1 (i-th canonical base
vector in Rd) and apply (2).

The following assumption is regarding the fifth and the seventh principle.

ASSUMPTION 7. Under the Assumptions 1 - 4 and 6, a minimum fair
price is a valuation principle π on Θ that must for any θ ∈ Θ fulfill

π0(θ) = πF
0 (H(θ)), (27)

where
H : Θ −→ ΘF (28)

is such that

(i) H(θ) is a t-portfolio whenever θ is.

(ii) H(1θ) = H(2θ) for B-i.i.d. portfolios 1θ and 2θ.

(iii) for t-portfolios {iθ : i ∈ N+}B−i.i.d. or {iθ : i ∈ N+}K, one has

1

m

m∑
i=1

〈iθ −H(iθ), St〉
m→∞−→ 0 P-a.s. (29)

Relation (28) means that the hedge H(θ) is a portfolio of the financial
market. Recall that the financial market MF is complete and any t-portfolio
features a self-financing replicating strategy until time t (cf. Lemma 1). How-
ever, (28) also implies that the hedging strategy does not react on biometric
events happening after time 0. Due to (ii), as in the classical case, the hedging
method H can not distinguish between similar (B-i.i.d.) individuals (cf. Prin-
ciple 5). Property (iii) is also adopted from the classical case, where pointwise
convergence is ensured by the Expectation Principle for appropriate insur-
ance products combined with respective hedges (cf. Principle 7 and Section 5).
Property (iii) is also related to Principle 4 in Section 2 as insurance companies
should be able to cope with large classes of similar (B-i.i.d.) contracts.

Now, the main result of this paper can be stated.
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THEOREM 1. Under the Assumptions 1 to 4, 6 and 7, the minimum fair
price π on Θ is uniquely determined by M = Q⊗ B, i.e. for θ ∈ Θ and t ∈ T,

πt(θ) = S0
t · EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ Bt]. (30)

As already has been mentioned, this valuation principle is quite well es-
tablished in the literature. However, our mathematically detailed derivation
within a very general framework seems to be new (see also Section 1, resp. 8).
Clearly, (15) is the special case of (30) in the presence of a deterministic finan-
cial market (e.g. when |FT | = 2). As π is unique, it is at the same time the
minimal valuation principle with the demanded properties. There is no other
valuation principle under the setting of Assumptions 1 - 4 that fulfills 6 and 7
and implies under the Principle of Equivalence (Assumption 5) lower premi-
ums than (30). Actually, property (iii) of Assumption 7 ensures that insurance
companies do not charge more than the cost of a more or less acceptable purely
financial hedge for each product which is sold. So to speak, the minimum fair
price is fair from the viewpoint of the insured, as well as from the viewpoint
of the companies.

The following lemmas are needed in order to prove the theorem.

LEMMA 4. On (F ×B,FT ⊗ BT ), it holds that

Q⊗ B ∼ F⊗ B. (31)

For the Radon-Nikodym derivatives, one has F⊗ B-a.s.

d(Q⊗ B)

d(F⊗ B)
=

dQ
dF

. (32)

Proof. For any FT ⊗ BT -measurable set Z, one has Q⊗ B(Z) = 0 if and only
if 1Z = 0 Q ⊗ B-a.s. for the indicator function 1Z of Z. However, 1Z = 0
Q ⊗ B-a.s. if and only if Q-a.s. 1Z(f, .) = 0 B-a.s. due to Lemma 2. But
Q ∼ F, i.e. Q-a.s. and F-a.s. are equivalent, and Q ⊗ B(Z) = 0 equivalent to
F⊗ B(Z) = 0 follows. Hence, (31). For any FT ⊗ BT -measurable set Z,

Q⊗ B(Z) = EQ⊗B[1Z ] = EQ[EB[1Z ]] (33)

due to Fubini’s Theorem. From the Fundamental Theorem dQ/dF exists and
is bounded, i.e.

Q⊗ B(Z) = EF

[
dQ
dF

EB[1Z ]

]
= EF⊗B

[
1Z

dQ
dF

]
. (34)

LEMMA 5. Under Assumption 1 and 2, one has for any θ ∈ Θ

H∗(θ) := EB[θ] ∈ ΘF . (35)

There is a self-financing strategy replicating H∗(θ), and under Assumption 6

πt(H
∗(θ)) = S0

t · EQ⊗B[〈θ, ST 〉/S0
T |Ft ⊗ B0] (36)

for t ∈ T. Moreover, H∗ fulfills properties (i), (ii) and (iii) of Assumption 7.



6 VALUATION: THE GENERAL CASE 18

Proof. By Fubini’s Theorem, EB[θ(f, .)] exists F-a.s. and EB[θ] is F-measurable
and -integrable. Hence, by the completeness of MF and uniqueness of Q, the
portfolio (35) can be replicated by the financial securities in MF and has due
to Assumption 6 and Remark 4 the price process

πt(EB[θ]) = S0
t · EQ⊗B[〈EB[θ], ST 〉/S0

T |Ft ⊗ B0]. (37)

〈θ, ST 〉/S0
T is F ⊗ B-integrable, since each θi (i = 0, . . . , d − 1) is F ⊗ B-

integrable, S0
T > 0, and S0

T almost surely takes finites values only (Dalang,
Morton and Willinger (1990)). By Lemma 4, (36) exists as (32) is bounded.
Since EQ⊗B[EB[X]|Ft⊗B0] = EQ⊗B[X|Ft⊗B0] P-a.s. for any Q⊗B-integrable
X (recall that B0 = {0, B}), (37) is identical to (36) P-a.s. As we have
EB[X] = EF⊗B[X|Ft ⊗ B0] P-a.s. for Ft ⊗ Bt-measurable X, H∗(θ) is a t-
portfolio. Property (ii) of Assumption 7 is obviously fulfilled. For any t-
portfolios {iθ : i ∈ N+}K or {iθ : i ∈ N+}B−i.i.d., the SLLN (in the first case by
Kolmogorov’s Criterion) implies for almost all f ∈ F that

1

m

m∑
i=1

〈iθ(f, .)−H∗(iθ)(f), St(f)〉 m→∞−→ 0 B-a.s. (38)

Lemma 3 completes the proof.

LEMMA 6. Under Assumption 1 and 2, for any θ ∈ Θ, any t ∈ T and for
M ∈ {F⊗ B, Q⊗ B}

EM[〈θ −H∗(θ), St〉] = 0. (39)

Proof. By Fubini’s Theorem.

LEMMA 7. Under the Assumptions 1 - 4 and 6, any H : Θ → ΘF fulfilling
(i), (ii) and (iii) of Assumption 7 fulfills for any θ in some ΘB−i.i.d.

πt(H(θ)) = S0
t · EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ B0], t ∈ T. (40)

The lemma shows for portfolios that could represent life policies that any
purely financial hedging method (i.e. a strategy not using biometric informa-
tion) fulfilling (i), (ii) and (iii) of Assumption 7 has the same price process as
(35). In particular, there is no such hedging method with stronger convergence
properties than (35).

Proof of Lemma 7. Consider to be given such an H as in Lemma 7 and a set
{iθ, i ∈ N+}B−i.i.d. of portfolios that contains a given portfolio θ ∈ Θ. As any
θ ∈ Θ is a T -portfolio, Lemma 3 implies that F-a.s.

1

m

m∑
i=1

〈iθ(f, .)−H(θ)(f), ST (f)〉 m→∞−→ 0 B-a.s. (41)

and by the SLLN one must have F-a.s.

〈H(θ)(f), ST (f)〉 = 〈EB[θ(f, .)], ST (f)〉. (42)

Assumption 6 (26) and condition (NA) in MF imply πt(H(θ)) = πt(EB[θ])
P-a.s. for t ∈ T. Lemma 5 completes the proof.
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Proof of Theorem 1. From Lemma 4 one has that Q⊗B ∼ F⊗B. Analogously
to Lemma 5, one obtains that (30) exists. Hence, (30) fulfills Assumption 6
(cf. Remark 4 (8)). Furthermore, (30) is a minimum fair price in the sense of
Assumption 7 since with H = H∗ one has (27) from

EQ⊗B[〈θ, ST 〉/S0
T ] = EQ[〈H∗(θ), ST 〉/S0

T ] (43)

by Fubini’s Theorem, and Lemma 5 shows that (i), (ii) and (iii) are fulfilled.
Observe that (30) is a valuation principle since (St/S

0
t )t∈T is a Q⊗B-martingale

and therefore πt(θt) = 〈θt, St〉 for any t-portfolio θt ∈ Θ (cf. Remark 4 and
Definition 1). Now, uniqueness will be shown. Suppose that π is a minimum
fair price in the sense of Assumption 7 and consider some {iθ, i ∈ N+}B−i.i.d..
Then it is know from Lemma 7 that π0(

iθ) = π0(H
∗(iθ)) = EQ⊗B[〈iθ, ST 〉/S0

T ]
for all i ∈ N+. However, one can choose the set {iθ, i ∈ N+}B−i.i.d. such
that 1θ = (1Z , 0, . . . , 0), where 1Z is the indicator function of a cylinder set
Z = F ′ × B1 × B2 × . . . with F ′ ∈ FT and Bj ∈ Bj

T for j ∈ N+, where
Bj 6= Bj for only finitely many j (Assumption 4 is crucial for the possibility of
this choice!). Clearly, these cylinders form a ∩-stable generator for MT , the
σ-algebra of the product space, and M itself is an element of this generator.
One obtains π0(

1θ) = Q ⊗ B(Z) = M(Z) from (36) and (25). M = Q ⊗ B
follows from the coincidence of the measures on the generator.

Assumptions 6 and 7 could be interpreted as a strong no-arbitrage principle
that fulfills (NA) and also excludes arbitrage-like strategies that have their
origin in the Law of Large Numbers and the possibility of diversification.

Example 2 (Asymptotic arbitrage opportunities). Consider a set
{iθ, i ∈ N+}B−i.i.d. of portfolios. The minimum fair price for each portfolio is
given by (30) (t = 0). If an insurance company sells the products {1θ, . . . , mθ}
at that prices, it can buy hedging portfolios such that the mean balance con-
verges to zero almost surely with m (cf. Assumption 7, (iii)). However, if the
company charges π0(

iθ) + ε, where ε > 0 is an additional fee and π is as in
(30), there still is the hedge as explained above, but the gain ε per contract was
made at t = 0. Hence, the safety load ε lets the insurance company become a
money making machine in the limit. A similar remark can be found in Møller
and Steffensen (1994).

So-called asymptotic arbitrage in large markets was originally analyzed in
technically very sophisticated papers of Kabanov and Kramkov (1994, 1998).
In a paper of Björk and Näslund (1998) on the same topic, there is a relatively
easy proof provided for the proposition that the existence of an EMM implies
absence of asymptotic arbitrage as defined by them. It seems to be straight-
forward that our example is covered by their definition (applied to the discrete
time case), and hence the existence of the EMM Q ⊗ B excludes also more
general kinds of arbitrage (in Björk’s and Näslund’s sense) than the simple
one given in the example above. Roughly speaking, in an idealized economy
close to equilibrium, any EMM M′ of the market MF×B obtained (indirectly,
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by the prices) from free trading of portfolios in MF×B should be expected to
be close to Q⊗ B, where Q would be the (equilibrium) EMM obtained from
just trading in MF (see also Brennan and Schwartz, 1976). Any strong sys-
tematic deviation could give rise to arbitrage-like trading opportunities, as we
have just seen.

Remark 7 (Quadratic hedging). Consider an L2-framework, i.e. the pay-
off 〈θt, St〉 of any considered t-portfolio θt lies in L2(M,Mt, P). As P = F⊗B,
it can easily be shown that EB[.] is the orthogonal projection of L2(M,Mt, P)
onto its purely financial (and closed) subspace L2(F,Ft, F). Standard Hilbert
space theory implies that the payoff 〈EB[θt], St〉 = EB[〈θt, St〉] of the hedge
H∗(θt) is the best L2-approximation of the payoff 〈θt, St〉 of the t-portfolio
θt by a purely financial portfolio in MF . Furthermore, it can easily be
shown that M = Q⊗ B minimizes ||dM/dP − 1||2 under the constraint
EB[dM/dP] = dQ/dF which is implied by Assumption 6. Under some ad-
ditional technical assumptions, this property is a characterization of the so-
called minimal martingale measure in the continuous time case (cf. Schweizer
(1995b), Møller (2001)). Hence, Q⊗ B can be interpreted as the EMM which
lies “next” to P = F⊗ B with respect to the L2-metric. Besides the conver-
gence properties discussed in this paper, these are the most important and
“natural” reasons for the use of (30). The hedging method H∗ considered
here is not the so-called mean-variance hedge as it is known from the literature
(cf. Bouleau and Lamberton (1989), Duffie and Richardson (1991)). The differ-
ence is that the mean-variance approach generally allows for all self-financing
trading strategies in MF×B, i.e. also biometric events could influence the strat-
egy in this case. However, the ideas are quite similar. An overview concerning
hedging approaches in insurance can be found in Møller (2002).

7 Hedging and diversification

In this section, it is shown in which way a life insurance company can hedge
its risk by products of the financial market - proposed the market is liquid
enough. The technical assumptions are quite weak.

Suppose Assumption 1 to 4 and a set of life policies {(iγt,
iδt)t∈T : i ∈ N+}

with {iγt : i ∈ N+}K and {iδt : i ∈ N+}K for all t ∈ T. Following hedging
method H∗ of Lemma 5, the portfolios (or strategies replicating) EB[iγt] and
−EB[iδt] are bought at time 0 for all i ∈ N+ and all t ∈ T. Consider the
balance of wins and losses at any time t ∈ T. For the mean total payoff per
contract at time t we have

1

m

m∑
i=1

〈iδt − iγt − EB[iδt − iγt], St〉
m→∞−→ 0 P-a.s. (44)

by Lemma 5. In analogy to Section 5, also the mean final balance converges
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to zero a.s., i.e.

1

m

m∑
i=1

T∑
t=0

〈iδt − iγt − EB[iδt − iγt], ST 〉
m→∞−→ 0 P-a.s. (45)

This kind of risk management is static in the sense that no trading strat-
egy reacts on biometric events happening after time 0. It corresponds to the
considerations in the classical case (Section 5). In Remark 7, it has already
been mentioned that the considered hedging method is not the so-called mean-
variance hedging. Another more comprehensive but not self-financing hedging
approach are the so-called risk-minimizing strategies (e.g. Møller (1998, 2001)).

Remark 8. Lemma 6 implies that any of the balances in (44) and (45) has
expectation 0 under the physical measure P = F⊗ B.

Premium calculation has not yet played any role in this section. However,
if the Principle of Equivalence (11) is applied under the minimum fair price
(30), one obtains for all i ∈ N+

T∑
t=0

π0(EB[−iδt + iγt]) =
T∑

t=0

π0(
iδt − iγt) = 0. (46)

Remark 9. Under (11) and (30), a life office can without any costs at time
0 (!) pursue a self-financing trading strategy such that the mean balance per
contract at any time t converges to zero almost surely for an increasing number
of individual policies. This is how diversification of biometric risks should be
understood in our model. The realization of such a hedge would demand the
precise knowledge of the second order base given by the Assumptions 1 to 4
(see also Remark 2).

In contrast to other, more comprehensive hedging methods, the presented
method has the advantage that there is no need for the risk manager to take
into account the biometric development of each individual. The information
available at the time of underwriting (t = 0) is sufficient, and all strategies are
self-financing.

Example 3 (Traditional policies). Consider a life insurance policy which

is for the i-th individual given by two cash flows (iγt)t∈T = (
iCt

S0
t
e0)t∈T and

(iδt)t∈T = (
iDt

S0
t
e0)t∈T with T = {0, 1, . . . , T} in years. Assume that iγt =

iδt = 0 for t greater than some Ti ∈ T, i.e. the contract has an expiration
date Ti, and that each iCt is for t ≤ Ti given by iCt(f, b) = ic iβ

γ
t (b

i) for
all (f, b) = (f, b1, b2, . . .) ∈ M where ic is a positive constant. Let (iδt)t∈T

be defined analogously with the variables iDt,
id and iβδ

t . Suppose that iβ
γ(δ)
t

is Bi
t-measurable with iβ

γ(δ)
t (bi) ∈ {0, 1} for all bi ∈ Bi (t ≤ Ti). For the

following have in mind that the portfolio e0/S
0
t can be interpreted as the

guaranteed payoff of one currency unit at time t. This kind of contract is called
a zero-coupon bond with maturity t and its price at time s < t is denoted by
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p(s, t− s) = πs(e0/S
0
t ) where t− s is the time to maturity and p(s, 0) := 1 for

all s ∈ T.
1. Term assurance. Suppose that for t ≤ Ti one has iβ

γ
t = 1 if and only if

the i-th individual has died in (t− 1, t] and for t < Ti that iβ
δ
t = 1 if and only

if the i-th individual is still alive at t, but iβ
δ
Ti
≡ 0. Assume that i is alive at

t = 0. Clearly, this contract is a term assurance with level annual premium id
and death benefit ic. EB[iβ

γ
t ] and EB[iβ

δ
t ] are mortality, respectively survival

probabilities. Respective data can be obtained from mortality tables. The
international actuarial notation is t−1|1qx = EB[iβ

γ
t ] (t > 0) and tpx = EB[iβ

δ
t ]

(0 < t < Ti) for an individual of age x (cf. Gerber (1997); for convenience
reasons, the notation −1|1qx = 0 and 0px = 1 is used in the following). The
hedge H∗ for iδt − iγt is for t < Ti given by the number of (ic t−1|1qx − id tpx)
zero-coupon bonds with maturity t, and for t = Ti by ic Ti−1|1qx zero-coupon
bonds with maturity Ti.
2. Endowment assurance. Assume for t < Ti that iβ

γ
t = 1 if and only if

the i-th individual has died in (t− 1, t], but iβ
γ
Ti

= 1 if and only if i has died

in (Ti− 1, Ti] or is still alive at Ti. Furthermore, iβ
δ
t = 1 if and only if the i-th

individual is still alive at t < Ti, but iβ
δ
Ti
≡ 0. Assume that i is alive at t = 0.

This contract is a so-called endowment that features level annual premiums
id, a death benefit of ic and survival benefit ic. The hedge H∗ with respect to
iδt − iγt is for t < Ti given by the number of (ic t−1|1qx − id tpx) zero-coupon
bonds with maturity t, and for t = Ti by ic (Ti−1|1qx + Ti

px) zero-coupon bonds
with maturity Ti.

In fact, in the case of traditional contracts, all hedging can be done by
zero-coupon bonds (also called matching).

Example 4 (Unit-linked products). The case of a unit-linked product
is interesting if and only if the product is not the sum of a traditional policy
and a simple fund policy (which is sometimes the case in practice). So, let us
assume that the policy is given by a cash flow of level premiums (iδt)t∈T as in
Example 3 and a flow of benefits (iγt)t∈T such that iγt(f, b) = iθt · ic iβ

γ
t (b

i)
for all (f, b) ∈ M where iθt ∈ ΘF is an arbitrary purely financial t-portfolio
and all other notations are the same as in the introduction of Example 3. For
instance, one could consider a number of shares of an index, or a number of
assets together with the respective European Puts which ensure a certain level
of benefit (i.e. a “unit-linked product with guarantee”). The strategy with
respect to iδt − iγt is given by ic · EB[iβ

γ
t ] times the replicating strategy of

iθt minus (id · EB[iβ
δ
t ]) zero-coupon bonds maturing at time t. In particular,

for iθt being a constant portfolio, the strategy is obviously very simple as the
portfolio must not be replicated, but can be bought directly.

Remark 10. The technical assumption (K), which is sufficient for the conver-
gence of (44) (cf. Definition 3 (iii)) and which is assumed at the very beginning
of this section, will be discussed now. In the case of traditional policies as in
Example 3, the realistic condition ic, id ≤ const ∈ R+ for all i ∈ N+ implies
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(K) for the sets {iγt : i ∈ N+} and {iδt : i ∈ N+} for all t ∈ T. In the case of
unit-linked products, suppose that there are only finitely many possible port-
folios iθt for each t ∈ T, which is also quite realistic as often shares of one
single fund are considered. Under this assumption, again ic, id ≤ const ∈ R+

for all i ∈ N+ implies (K) for the sets {iγt : i ∈ N+} and {iδt : i ∈ N+} for all
t ∈ T. Hence, (K) is no drawback for practical purposes.

8 Comparison with other approaches

A recent version of Møller and Steffensen (1994) describes a diversification ap-
proach by claiming that the property that the relative net loss of a portfolio
of unit-linked contracts converges to zero with increasing size uniquely charac-
terizes the premium given by the product measure principle. They also point
out the possibility of an infinitely large surplus if premiums are taken larger
(cf. Example 2). At the stage of this remark, the mathematical framework
is not precisely specified and proofs are not provided. Nonetheless, what we
have shown in this paper is quite close to what Møller and Steffensen have
sketched in their lecture notes. However, it should be pointed out that their
loss (balance), in contrast to ours, is discounted to time zero.

The earlier mentioned work of Becherer (2003) considers a utility-
indifference approach with respect to exponential utility for valuation and
hedging of integrate tradable (e.g. financial) and non-tradable (e.g. biomet-
ric) risks. As Becherer points out, this approach can be seen as an adaption of
the exponential premium principle to a model with dynamic financial markets.
The first half of the article is dedicated to considerations and results for a gen-
eral semi-martingale market framework. Aiming for more constructive results,
Becherer (2003) examines a class of “semi-complete product models” existing
of a complete financial sub-market and of an additional countable number of
independent (non-tradable) sources of risk. Showing an additivity result for
the price of claims that are conditionally (on the financial sub-market) inde-
pendent, Becherer proves, under certain technical conditions, that the utility-
indifference price of an average portfolio (actually: arithmetic mean) of claims,
which are i.i.d. conditioned on the financial sub-market, converges to what we
call the minimum fair price (by the product measure principle) of such a claim
(Theorem 4.11 in Becherer (2003)). An example for a certain type of bounded
equity-linked policies for i.i.d. lives is given.

The main difference between Becherer’s work and the approach of this
paper when deriving the valuation principle is that Becherer assumes the ex-
istence of a utility function, whereas we demanded convergence of balances
(cf. Assumption 7 (iii)). Another difference is that we showed how diversifica-
tion in the sense of converging mean balances of hedges and policy cash flows
appears, in contrast to Becherer (2003), where a convergence property of the
utility-indifference price is shown (in general, a full indifference price process
is derived). The utility-indifference price at time zero can therefore be seen
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as an approximation of the minimum fair price in the case of a large portfolio
of small contracts, or vice versa. Becherer works mostly in continuous time.
Technically, he does not consider a product space, but an original σ-algebra
(σ-field) of the financial market augmented by independent ones representing
non-tradable risks. Becherer’s assumptions about spaces and the time axis are
therefore more general than in our setup.

In a quite general continuous time framework, Steffensen (2000) derives a
stochastic version of Thiele’s Differential Equation, and also the set of possible
equivalent martingale measures for the assumed market model. Steffensen’s
model is much more general as e.g. Aase and Persson (1994), which works ba-
sically with a Black-Scholes model. For instance, Steffensen’s work also allows
for jumps in price processes, and actually his model allows for the trading of
mortality risks. In this sense, Steffensen (2000) is much more general than our
approach since we just derive one (therefore unique) EMM of many possible
ones. We restrict the set of possible EMMs by the additional requirement of
diversification (convergence property). In Steffensen (2000), the product mea-
sure principle is just one of many possible valuation principles which could
arise from arbitrage-free trading of insurance products.

The last comparison in this section is regarding an approach which was
proposed by an unknown referee. To simplify notation, we will work directly
with cash flows instead of portfolios and assume the money account to be
constant 1, i.e. S0

t = 1 for all t ∈ T. Now, assume B-i.i.d. payoffs H i (i ∈ N).
Under certain assumptions, the SLLN implies

lim
m→∞

1

m

m∑
i=1

H i = EF⊗B[H1|FT ⊗ B0] := H. (47)

Now assume that a valuation principle π is given by some EMM M which is
fair in the sense that

π0(H) = EM[H] = EQ[H], (48)

and
π0(H

i) = EM[H i] = EM[Hj] = π0(H
j) for all i, j ∈ N. (49)

From this and the linearity of the expectation operator, we obtain

lim
m→∞

EM

[
1

m

m∑
i=1

H i

]
= lim

m→∞

1

m

m∑
i=1

EM[H i] = EM[Hj] for all j ∈ N. (50)

The referee now conludes that under sufficient integrability conditions

π0(H
j) = EM[Hj] = lim

m→∞
EM

[
1

m

m∑
i=1

H i

]
(51)

= EM

[
lim

m→∞

1

m

m∑
i=1

H i

]
= EM[H] = π0(H).
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So, roughly speaking, this approach shows quite directly that we are forced
to evaluate like π0(H

i) = π0(EF⊗B[H i|FT ⊗ B0]) = π0(EB[H i]), which is a
statement about a valuation principle (and not a measure), and closely related
to our essential Lemma 7, seen together with Assumption 7, Eq. (27).

From a technical point of view, the above sketched approach is not much
simpler than ours. The reason is that still uniqueness of the EMM has to be
proven, taking into account condition (48) for M. A proof would be essentially
the same as the one for Theorem 1. Furthermore, integrability conditions must
be given for (51), which can be done using the conditions for the Dominated
Convergence Theorem. Appropriate would be e.g. our condition (K). The
B-i.i.d condition together with Lemma 3 and the SLLN would prove (47).
Taking into account all technical subtleties, the amount of work seems to be
quite similar for both approaches, perhaps a little less for the one presented
above. The main difference, however, is that the above approach does not need
a postulation of hedges which let mean balances converge to zero. Instead,
it uses the SLLN directly for the claims (cf. Eq. (47)) and, by Dominated
Convergence, a property of the Lebesgue integral to derive (51).

9 Incomplete financial markets

Until now, the theory presented in this paper assumed complete and arbitrage-
free markets (cf. Assumption 2), which reduces the number of explicit market
models that can be considered. However, some of the concepts work, under
some restrictions, with incomplete market models.

In particular, it is now assumed that in Assumption 2 completeness of the
market model MF and uniqueness of the EMM Q is not demanded, but Q ∼ F
and dQ/dF bounded. Let us enumerate the altered assumption by 2’ and
define

ΘF = {θ : θ replicable by a self-financing strategy in MF} (52)

Θ = {θ : θ ∈ (L1(M,MT , P))d and EB[θ] ∈ ΘF}. (53)

It is well-known from the theory of financial markets that any EMM Q fulfills
pricing formula (3) for any replicable portfolio θ ∈ ΘF . Now, with ΘF and Θ
as defined above and Assumption 2 replaced by 2’, it can easily be checked
that the Lemmas 4 - 7 still hold. Concerning Theorem 1, π as defined in (30)
is for any financial EMM Q a minimum fair price. Hence, uniqueness seems
to be lost. However, for any minimum fair price one still has that π0 is unique
on (53). The reason is that for any θ ∈ Θ and any two EMM Q and Q of MF

EQ⊗B[〈θ, ST 〉/S0
T ] = EQ⊗B[〈θ, ST 〉/S0

T ] (54)

by Fubini’s Theorem and the (NA)-condition. Hence, pricing at time t = 0 and
hedging (cf. Section 7) still work as in the case of complete financial markets.
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In the presence of arbitrage opportunities, the existence of an equivalent
martingale measure gets lost. Nonetheless, assume a financial market model
MF which is neither necessarily arbitrage-free, nor complete and suppose that
there is a valuation principle πF used in MF on a set ΘF of purely financial
portfolios which are taken into consideration (this does not mean absence of
arbitrage). Under the considered ΘF , define Θ by (53) and for any θ ∈ Θ

π0(θ) = πF
0 (EB[θ]), (55)

which is the price of the hedge H∗ at time 0 (compare with (27) and (36) for
t = 0). In an L2-framework as in Remark 7, i.e. if we have for any t that
〈Θ, St〉 ⊂ L2(M,MT , P), EB[θ] is the best approximation in ΘF to any θ ∈ Θ
in the L2-sense (cf. Remark 7). Even if we do not assume the L2-framework,
the properties (i), (ii) and (iii) of Assumption 7 are still fulfilled for the above
defined Θ and for H∗ as in (35). Hence, π0 satisfies the demand for converging
balances as stated in Principle 7 of Section 2 and the expressions (44) and (45)
are still valid. For these reasons, (55) is a rather sensible valuation principle.

10 Example with historical data

It is not new to evaluate life insurance policies with real market data. Many
examples can be found in the literature (e.g. Koller, 2000). The following
example intends to demonstrate the impact of market-based valuation for a
particular set of contracts with German market data.

Let us consider the traditional policies as described in Example 3. Applying
the Principle of Equivalence (11), we demand

π0

(
Ti∑

t=0

ic iβ
γ

t e0/S
0
t

)
= π0

(
Ti∑

t=0

id iβ
δ

te0/S
0
t

)
. (56)

Now, suppose that the minimum fair price π from (30), respectively valuation
principle (55), is applied for premium calculation. Clearly,

id
ic

=

Ti∑
t=0

p(0, t) · EB[iβ
γ

t ]
/ Ti∑

t=0

p(0, t) · EB[iβ
δ

t ] (57)

where p(0, t) is the price of a zero-coupon bond as defined in Section 7. An
important consequence of (57) is that the quotient id/ic (minimum fair pre-
mium/benefit) depends on the zero-coupon bond prices (or yield curve) at
time 0. As the term structure of interest rates varies from day to day, this
particularly means that id/ic varies from day to day and therefore depends on
the day of underwriting (actually, it depends on the exact time). Insurance
companies do not determine prices daily. Hence, in our model, they give rise
to financial risks as policies may be over-valued.
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Now, assume that any time value is given in fractions of years. The so-
called spot (interest) rate R(t, τ) for the time interval [t, t + τ ] is defined by

R(t, τ) = − log p(t, τ)

τ
. (58)

The short rate r(t) at t is defined by r(t) = limτ→0 R(t, τ), where the limit is
assumed to exist. The yield curve at time t is the mapping with τ 7→ R(t, τ)
for τ > 0 and 0 7→ r(t). Figure 5 shows the historical yield structure (i.e. the
set of yield curves) of the German debt securities market from September 1972
to April 2003. The 368 values are taken from the end of each month. The ma-
turities’ range is 0 to 28 years. The values for τ > 0 were computed via a para-
metric presentation of yield curves (the so-called Svensson-method; cf. Schich
(1997)) for which parameters can be taken from the Internet page of the Ger-
man Federal Reserve (Deutsche Bundesbank; http://www.bundesbank.de).
The implied Bundesbank values R′ are estimates of discrete interest rates on
notional zero-coupon bonds based on German Federal bonds and treasuries
(cf. Schich, 1997) and have to be converted to continuously compounded inter-
est rates (as implicitly used in (58)) by R = ln(1 + R′). As approximation for
the short rate, the day-to-day money rates from the Frankfurt market (Monats-
durchschnitt des Geldmarktsatzes für Tagesgeld am Frankfurter Bankplatz; also
available at the Bundesbank homepage) are taken and converted into contin-
uous rates. Actually, the short rate is not used in the following but completes
Figure 5.

Equation (58) shows that interest rates (yields) and zero-coupon bond
prices contain the same information, namely the present value of a non-
defaultable future payoff. As there is a yield curve given for any time t of the
considered historical time axis, it is possible to compute the historical value of
id/ic for t (which is the date of underwriting for the respective contract) via
(58) and (57). Doing so, one obtains

id
ic

(t) =

Ti∑
τ=0

p(t, τ) τ−1|1qx(t)
/ Ti−1∑

τ=0

p(t, τ) τpx(t) (59)

for the traditional term assurance and

id
ic

(t) =

(
p(t, Ti) Ti

px(t) +

Ti∑
τ=0

p(t, τ) τ−1|1qx(t)

)/ Ti−1∑
τ=0

p(t, τ) τpx(t) (60)

for the endowment (cf. Example 3). The values τ−1|1qx (τ > 0) and τpx

(0 < τ < Ti) are taken from (or computed by) the DAV (Deutsche Aktuarvere-
inigung) mortality table “1994 T” (Loebus, 1994), the value Ti

px is computed
by the table “1994 R” (Schmithals and Schütz, 1995). The reason for the dif-
ferent tables is that in actuarial practice mortality tables contain safety loads
which depend on whether the death of a person is in (financial) favour of the
insurance company, or not. In this sense, the used mortality tables are first
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order tables (cf. Remark 2). Clearly, the use of internal second order tables of
real life insurance companies would be more appropriate. However, for com-
petitive reasons they are usually not published. All probabilities mentioned
above are considered to be constant in time. Especially, to make things easier,
there is no “aging shift” applied to table “1994 R”.

Now, consider a man of age x = 30 years and the time axis T =
{0, 1, . . . , 10} (in years). In Figure 1, the rescaled quotients (59) and (60)
are plotted for the above setup. For comparison reasons: the absolute values
at the starting point (September 1972) are id/ic = 0.063792 for the endow-
ment, respectively id/ic = 0.001587 for the term assurance. The plot nicely
shows the dynamics of the quotients and hence of the minimum fair premiums
id if the benefit ic is assumed to be constant. The premiums of the endowment
seem to be much more subject to interest rate fluctuations than the premiums
of the term assurance. For instance, the minimum fair annual premium id
for the 10-year endowment with a benefit of ic = 100, 000 Euros was 5,285.55
Euros at the 31st July 1974 and 8,072.26 at the 31st January 1999. For the
term assurance (with the same benefit), one obtains id = 152.46 Euros at the
31st July 1974 and 168.11 at the 31st January 1999 (cf. Table 1).

If one assumes a discrete technical (= first order) rate of interest R′
tech,

e.g. 0.035, which is the mean of the interest rates legally guaranteed by German
life insurers, one can compute technical quotients idtech/

ic by computing the
technical values of zero-coupon bonds, i.e. ptech(t, τ) = (1 + R′

tech)
−τ , and

plugging them into (59), resp. (60). If a life insurance company charges the
technical premiums idtech instead of the minimum fair premiums id and if one
considers the valuation principle (30), respectively (55), to be a reasonable
choice, the market value of the considered policy at time t is

iMV = (idtech − id) ·
Ti−1∑
τ=0

p(t, τ) τpx(t) (61)

due to the Principle of Equivalence, respectively (56). In particular, this means
that the insurance company can book the gain or loss (61) in the mean (or limit;
cf. Example 2 and Remark 8) at time 0 as long as proper risk management,
as described in Section 7, takes place afterwards. Thus, the market value
(61) is a measure for the profit, or simply the expected discounted profit of the
considered contract if one neglects all additional costs and the fact that first
order mortality tables are used.

Figure 2 shows the historical development of iMV /ic (market
value/benefit) for the 10-year endowment as described above (solid line). For
instance, the market value iMV of a 10-year endowment with a benefit of
ic = 100, 000 Euros was 20,398.70 Euros at July 31, 1974. At the 31st January
1999, it was worth 2,578.55 Euros, only. The situation becomes even worse in
the case of a technical (or promised) rate of interest R′

tech = 0.050 (dashed line)
- which is quite little in contrast to formerly promised returns of e.g. German
life insurers. At the 31st January 1999, such a contract was worth -3,141.95
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Euros, i.e. the contract actually produced a loss in the mean. Some market
values of the 10-year term assurance can be found in Table 1 on page 32.

All computations from above have also been carried out for a 25-year en-
dowment, respectively term assurance (cf. Table 1). The corresponding fig-
ures are 3 and 4. Concerning Figure 3, the absolute values at the starting
point (September 1972) are id/ic = 0.013893 for the endowment, respectively
id/ic = 0.002553 for the life assurance. The minimum fair premium id for the
25-year endowment with benefit ic = 100, 000 Euros was 808.39 Euros at the
31st July 1974 and 2,177.32 Euros at the 31st January 1999. For the term
assurance with the same benefit, one obtains id = 216.37 Euros at the 31st
July 1974 and 303.90 at the 31st January 1999. Hence, the premium-to-benefit
ratio for both types of contracts seems to be more dependent on the yield struc-
ture than in the 10-year case. However, compared to the 10-year contracts,
the longer running time seems to stabilize the market values of the contracts
(cf. Table 1 and Figure 4). Nonetheless, they are still strongly depending on
the yield structure.

11 Conclusion

The paper has shown that the product measure valuation principle (minimum
fair price), which is frequently used in modern life insurance mathematics, fol-
lows from a set of eight principles, or seven mathematical assumptions, defining
the model framework. One of them, diversification, was the demand for con-
verging mean balances under certain, rather rudimentary, hedges which must
be able to be financed by the minimum fair prices. As in the classical case,
the Law of Large Numbers plays a fundamental role, here. Actually, only two
principles, the demand for complete, arbitrage-free financial markets and the
principle of no-arbitrage pricing, were in their origin not traditional. The ex-
amples in the last section, but also the hedging examples in the sections before,
have once more confirmed the importance of market-based valuation princi-
ples and financial hedging methods in the modern practice of life insurance
mathematics.
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A Figures and tables

Date 1974/07/31 1999/01/31

Term assurance: 10 years

Techn. premium idtech (R′
tech = 0.035) 168.94

Techn. premium idtech (R′
tech = 0.050) 165.45

Minimum fair annual premium id 152.46 168.11

Market value iMV (R′
tech = 0.035) 108.90 7.17

Market value iMV (R′
tech = 0.050) 85.84 -22.80

Term assurance: 25 years

Techn. premium idtech (R′
tech = 0.035) 328.02

Techn. premium idtech (R′
tech = 0.050) 303.27

Minimum fair annual premium id 216.37 303.90

Market value iMV (R′
tech = 0.035) 1,009.56 376.84

Market value iMV (R′
tech = 0.050) 785.80 -9.83

Endowment: 10 years

Techn. premium idtech (R′
tech = 0.035) 8,372.65

Techn. premium idtech (R′
tech = 0.050) 7,706.24

Minimum fair annual premium id 5,285.55 8,072.26

Market value iMV (R′
tech = 0.035) 20,398.70 2,578.55

Market value iMV (R′
tech = 0.050) 15,995.27 -3,141.95

Endowment: 25 years

Techn. premium idtech (R′
tech = 0.035) 2,760.85

Techn. premium idtech (R′
tech = 0.050) 2,255.93

Minimum fair annual premium id 808.39 2,177.32

Market value iMV (R′
tech = 0.035) 17,655.42 9,118.39

Market value iMV (R′
tech = 0.050) 13,089.53 1,228.34

Table 1: Selected (extreme) values for varying policies for a 30 year old man
(fixed benefit: ic = 100, 000 Euros)
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Figure 1: Rescaled plot of the quotient id/ic (minimum fair annual pre-
mium/benefit) for the 10-year endowment (solid), resp. term assurance
(dashed), for a 30 year old man
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Figure 2: iMV /ic (market value/benefit) for the 10-year endowment under a
technical interest rate of 0.035 (solid) and 0.050 (dashed)
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Figure 3: Rescaled plot of the quotient id/ic (minimum fair annual pre-
mium/benefit) for the 25-year endowment (solid), resp. term assurance
(dashed), for a 30 year old man
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Figure 4: iMV /ic (market value/benefit) for the 25-year endowment under a
technical interest rate of 0.035 (solid) and 0.050 (dashed)
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Figure 5: Historical yields of the German debt securities market


